encode.go 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "errors"
  7. "fmt"
  8. "io"
  9. "reflect"
  10. "runtime"
  11. "sort"
  12. "strconv"
  13. "time"
  14. )
  15. // defEncByteBufSize is the default size of []byte used
  16. // for bufio buffer or []byte (when nil passed)
  17. const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
  18. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  19. /*
  20. // encWriter abstracts writing to a byte array or to an io.Writer.
  21. //
  22. //
  23. // Deprecated: Use encWriterSwitch instead.
  24. type encWriter interface {
  25. writeb([]byte)
  26. writestr(string)
  27. writen1(byte)
  28. writen2(byte, byte)
  29. end()
  30. }
  31. */
  32. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  33. type encDriver interface {
  34. EncodeNil()
  35. EncodeInt(i int64)
  36. EncodeUint(i uint64)
  37. EncodeBool(b bool)
  38. EncodeFloat32(f float32)
  39. EncodeFloat64(f float64)
  40. // encodeExtPreamble(xtag byte, length int)
  41. EncodeRawExt(re *RawExt, e *Encoder)
  42. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  43. // Deprecated: use EncodeStringEnc instead
  44. EncodeString(c charEncoding, v string)
  45. // Deprecated: use EncodeStringBytesRaw instead
  46. EncodeStringBytes(c charEncoding, v []byte)
  47. EncodeStringEnc(c charEncoding, v string) // c cannot be cRAW
  48. // EncodeSymbol(v string)
  49. EncodeStringBytesRaw(v []byte)
  50. EncodeTime(time.Time)
  51. //encBignum(f *big.Int)
  52. //encStringRunes(c charEncoding, v []rune)
  53. WriteArrayStart(length int)
  54. WriteArrayElem()
  55. WriteArrayEnd()
  56. WriteMapStart(length int)
  57. WriteMapElemKey()
  58. WriteMapElemValue()
  59. WriteMapEnd()
  60. reset()
  61. atEndOfEncode()
  62. }
  63. type encDriverAsis interface {
  64. EncodeAsis(v []byte)
  65. }
  66. type encodeError struct {
  67. codecError
  68. }
  69. func (e encodeError) Error() string {
  70. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  71. }
  72. type encDriverNoopContainerWriter struct{}
  73. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  74. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  75. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  76. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  77. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  78. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  79. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  80. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  81. type encDriverTrackContainerWriter struct {
  82. c containerState
  83. }
  84. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  85. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  86. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  87. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  88. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  89. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  90. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  91. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  92. // type ioEncWriterWriter interface {
  93. // WriteByte(c byte) error
  94. // WriteString(s string) (n int, err error)
  95. // Write(p []byte) (n int, err error)
  96. // }
  97. // EncodeOptions captures configuration options during encode.
  98. type EncodeOptions struct {
  99. // WriterBufferSize is the size of the buffer used when writing.
  100. //
  101. // if > 0, we use a smart buffer internally for performance purposes.
  102. WriterBufferSize int
  103. // ChanRecvTimeout is the timeout used when selecting from a chan.
  104. //
  105. // Configuring this controls how we receive from a chan during the encoding process.
  106. // - If ==0, we only consume the elements currently available in the chan.
  107. // - if <0, we consume until the chan is closed.
  108. // - If >0, we consume until this timeout.
  109. ChanRecvTimeout time.Duration
  110. // StructToArray specifies to encode a struct as an array, and not as a map
  111. StructToArray bool
  112. // Canonical representation means that encoding a value will always result in the same
  113. // sequence of bytes.
  114. //
  115. // This only affects maps, as the iteration order for maps is random.
  116. //
  117. // The implementation MAY use the natural sort order for the map keys if possible:
  118. //
  119. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  120. // then the map keys are first sorted in natural order and then written
  121. // with corresponding map values to the strema.
  122. // - If there is no natural sort order, then the map keys will first be
  123. // encoded into []byte, and then sorted,
  124. // before writing the sorted keys and the corresponding map values to the stream.
  125. //
  126. Canonical bool
  127. // CheckCircularRef controls whether we check for circular references
  128. // and error fast during an encode.
  129. //
  130. // If enabled, an error is received if a pointer to a struct
  131. // references itself either directly or through one of its fields (iteratively).
  132. //
  133. // This is opt-in, as there may be a performance hit to checking circular references.
  134. CheckCircularRef bool
  135. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  136. // when checking if a value is empty.
  137. //
  138. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  139. RecursiveEmptyCheck bool
  140. // Raw controls whether we encode Raw values.
  141. // This is a "dangerous" option and must be explicitly set.
  142. // If set, we blindly encode Raw values as-is, without checking
  143. // if they are a correct representation of a value in that format.
  144. // If unset, we error out.
  145. Raw bool
  146. // StringToRaw controls how strings are encoded.
  147. //
  148. // As a go string is just an (immutable) sequence of bytes,
  149. // it can be encoded either as raw bytes or as a UTF string.
  150. //
  151. // By default, strings are encoded as UTF-8.
  152. // but can be treated as []byte during an encode.
  153. //
  154. // Note that things which we know (by definition) to be UTF-8
  155. // are ALWAYS encoded as UTF-8 strings.
  156. // These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
  157. StringToRaw bool
  158. // // AsSymbols defines what should be encoded as symbols.
  159. // //
  160. // // Encoding as symbols can reduce the encoded size significantly.
  161. // //
  162. // // However, during decoding, each string to be encoded as a symbol must
  163. // // be checked to see if it has been seen before. Consequently, encoding time
  164. // // will increase if using symbols, because string comparisons has a clear cost.
  165. // //
  166. // // Sample values:
  167. // // AsSymbolNone
  168. // // AsSymbolAll
  169. // // AsSymbolMapStringKeys
  170. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  171. // AsSymbols AsSymbolFlag
  172. }
  173. // ---------------------------------------------
  174. /*
  175. type ioEncStringWriter interface {
  176. WriteString(s string) (n int, err error)
  177. }
  178. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  179. type ioEncWriter struct {
  180. w io.Writer
  181. ww io.Writer
  182. bw io.ByteWriter
  183. sw ioEncStringWriter
  184. fw ioFlusher
  185. b [8]byte
  186. }
  187. func (z *ioEncWriter) reset(w io.Writer) {
  188. z.w = w
  189. var ok bool
  190. if z.bw, ok = w.(io.ByteWriter); !ok {
  191. z.bw = z
  192. }
  193. if z.sw, ok = w.(ioEncStringWriter); !ok {
  194. z.sw = z
  195. }
  196. z.fw, _ = w.(ioFlusher)
  197. z.ww = w
  198. }
  199. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  200. z.b[0] = b
  201. _, err = z.w.Write(z.b[:1])
  202. return
  203. }
  204. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  205. return z.w.Write(bytesView(s))
  206. }
  207. func (z *ioEncWriter) writeb(bs []byte) {
  208. if _, err := z.ww.Write(bs); err != nil {
  209. panic(err)
  210. }
  211. }
  212. func (z *ioEncWriter) writestr(s string) {
  213. if _, err := z.sw.WriteString(s); err != nil {
  214. panic(err)
  215. }
  216. }
  217. func (z *ioEncWriter) writen1(b byte) {
  218. if err := z.bw.WriteByte(b); err != nil {
  219. panic(err)
  220. }
  221. }
  222. func (z *ioEncWriter) writen2(b1, b2 byte) {
  223. var err error
  224. if err = z.bw.WriteByte(b1); err == nil {
  225. if err = z.bw.WriteByte(b2); err == nil {
  226. return
  227. }
  228. }
  229. panic(err)
  230. }
  231. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  232. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  233. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  234. // panic(err)
  235. // }
  236. // }
  237. //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
  238. func (z *ioEncWriter) end() {
  239. if z.fw != nil {
  240. if err := z.fw.Flush(); err != nil {
  241. panic(err)
  242. }
  243. }
  244. }
  245. */
  246. // ---------------------------------------------
  247. // bufioEncWriter
  248. type bufioEncWriter struct {
  249. buf []byte
  250. w io.Writer
  251. n int
  252. sz int // buf size
  253. // Extensions can call Encode() within a current Encode() call.
  254. // We need to know when the top level Encode() call returns,
  255. // so we can decide whether to Release() or not.
  256. calls uint16 // what depth in mustDecode are we in now.
  257. _ [6]uint8 // padding
  258. bytesBufPooler
  259. _ [1]uint64 // padding
  260. // a int
  261. // b [4]byte
  262. // err
  263. }
  264. func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
  265. z.w = w
  266. z.n = 0
  267. z.calls = 0
  268. if bufsize <= 0 {
  269. bufsize = defEncByteBufSize
  270. }
  271. z.sz = bufsize
  272. if cap(z.buf) >= bufsize {
  273. z.buf = z.buf[:cap(z.buf)]
  274. } else {
  275. z.buf = z.bytesBufPooler.get(bufsize)
  276. // z.buf = make([]byte, bufsize)
  277. }
  278. }
  279. func (z *bufioEncWriter) release() {
  280. z.buf = nil
  281. z.bytesBufPooler.end()
  282. }
  283. //go:noinline - flush only called intermittently
  284. func (z *bufioEncWriter) flushErr() (err error) {
  285. n, err := z.w.Write(z.buf[:z.n])
  286. z.n -= n
  287. if z.n > 0 && err == nil {
  288. err = io.ErrShortWrite
  289. }
  290. if n > 0 && z.n > 0 {
  291. copy(z.buf, z.buf[n:z.n+n])
  292. }
  293. return err
  294. }
  295. func (z *bufioEncWriter) flush() {
  296. if err := z.flushErr(); err != nil {
  297. panic(err)
  298. }
  299. }
  300. func (z *bufioEncWriter) writeb(s []byte) {
  301. LOOP:
  302. a := len(z.buf) - z.n
  303. if len(s) > a {
  304. z.n += copy(z.buf[z.n:], s[:a])
  305. s = s[a:]
  306. z.flush()
  307. goto LOOP
  308. }
  309. z.n += copy(z.buf[z.n:], s)
  310. }
  311. func (z *bufioEncWriter) writestr(s string) {
  312. // z.writeb(bytesView(s)) // inlined below
  313. LOOP:
  314. a := len(z.buf) - z.n
  315. if len(s) > a {
  316. z.n += copy(z.buf[z.n:], s[:a])
  317. s = s[a:]
  318. z.flush()
  319. goto LOOP
  320. }
  321. z.n += copy(z.buf[z.n:], s)
  322. }
  323. func (z *bufioEncWriter) writen1(b1 byte) {
  324. if 1 > len(z.buf)-z.n {
  325. z.flush()
  326. }
  327. z.buf[z.n] = b1
  328. z.n++
  329. }
  330. func (z *bufioEncWriter) writen2(b1, b2 byte) {
  331. if 2 > len(z.buf)-z.n {
  332. z.flush()
  333. }
  334. z.buf[z.n+1] = b2
  335. z.buf[z.n] = b1
  336. z.n += 2
  337. }
  338. func (z *bufioEncWriter) endErr() (err error) {
  339. if z.n > 0 {
  340. err = z.flushErr()
  341. }
  342. return
  343. }
  344. // ---------------------------------------------
  345. // bytesEncAppender implements encWriter and can write to an byte slice.
  346. type bytesEncAppender struct {
  347. b []byte
  348. out *[]byte
  349. }
  350. func (z *bytesEncAppender) writeb(s []byte) {
  351. z.b = append(z.b, s...)
  352. }
  353. func (z *bytesEncAppender) writestr(s string) {
  354. z.b = append(z.b, s...)
  355. }
  356. func (z *bytesEncAppender) writen1(b1 byte) {
  357. z.b = append(z.b, b1)
  358. }
  359. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  360. z.b = append(z.b, b1, b2)
  361. }
  362. func (z *bytesEncAppender) endErr() error {
  363. *(z.out) = z.b
  364. return nil
  365. }
  366. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  367. z.b = in[:0]
  368. z.out = out
  369. }
  370. // ---------------------------------------------
  371. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  372. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  373. }
  374. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  375. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  376. }
  377. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  378. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  379. }
  380. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  381. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  382. e.marshalRaw(bs, fnerr)
  383. }
  384. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  385. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  386. e.marshalUtf8(bs, fnerr)
  387. }
  388. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  389. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  390. e.marshalAsis(bs, fnerr)
  391. }
  392. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  393. e.rawBytes(rv2i(rv).(Raw))
  394. }
  395. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  396. e.e.EncodeNil()
  397. }
  398. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  399. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  400. }
  401. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  402. ti := f.ti
  403. ee := e.e
  404. // array may be non-addressable, so we have to manage with care
  405. // (don't call rv.Bytes, rv.Slice, etc).
  406. // E.g. type struct S{B [2]byte};
  407. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  408. if f.seq != seqTypeArray {
  409. if rv.IsNil() {
  410. ee.EncodeNil()
  411. return
  412. }
  413. // If in this method, then there was no extension function defined.
  414. // So it's okay to treat as []byte.
  415. if ti.rtid == uint8SliceTypId {
  416. ee.EncodeStringBytesRaw(rv.Bytes())
  417. return
  418. }
  419. }
  420. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  421. e.errorf("send-only channel cannot be encoded")
  422. }
  423. elemsep := e.esep
  424. rtelem := ti.elem
  425. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  426. var l int
  427. // if a slice, array or chan of bytes, treat specially
  428. if rtelemIsByte {
  429. switch f.seq {
  430. case seqTypeSlice:
  431. ee.EncodeStringBytesRaw(rv.Bytes())
  432. case seqTypeArray:
  433. l = rv.Len()
  434. if rv.CanAddr() {
  435. ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
  436. } else {
  437. var bs []byte
  438. if l <= cap(e.b) {
  439. bs = e.b[:l]
  440. } else {
  441. bs = make([]byte, l)
  442. }
  443. reflect.Copy(reflect.ValueOf(bs), rv)
  444. ee.EncodeStringBytesRaw(bs)
  445. }
  446. case seqTypeChan:
  447. // do not use range, so that the number of elements encoded
  448. // does not change, and encoding does not hang waiting on someone to close chan.
  449. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  450. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  451. if rv.IsNil() {
  452. ee.EncodeNil()
  453. break
  454. }
  455. bs := e.b[:0]
  456. irv := rv2i(rv)
  457. ch, ok := irv.(<-chan byte)
  458. if !ok {
  459. ch = irv.(chan byte)
  460. }
  461. L1:
  462. switch timeout := e.h.ChanRecvTimeout; {
  463. case timeout == 0: // only consume available
  464. for {
  465. select {
  466. case b := <-ch:
  467. bs = append(bs, b)
  468. default:
  469. break L1
  470. }
  471. }
  472. case timeout > 0: // consume until timeout
  473. tt := time.NewTimer(timeout)
  474. for {
  475. select {
  476. case b := <-ch:
  477. bs = append(bs, b)
  478. case <-tt.C:
  479. // close(tt.C)
  480. break L1
  481. }
  482. }
  483. default: // consume until close
  484. for b := range ch {
  485. bs = append(bs, b)
  486. }
  487. }
  488. ee.EncodeStringBytesRaw(bs)
  489. }
  490. return
  491. }
  492. // if chan, consume chan into a slice, and work off that slice.
  493. if f.seq == seqTypeChan {
  494. rvcs := reflect.Zero(reflect.SliceOf(rtelem))
  495. timeout := e.h.ChanRecvTimeout
  496. if timeout < 0 { // consume until close
  497. for {
  498. recv, recvOk := rv.Recv()
  499. if !recvOk {
  500. break
  501. }
  502. rvcs = reflect.Append(rvcs, recv)
  503. }
  504. } else {
  505. cases := make([]reflect.SelectCase, 2)
  506. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  507. if timeout == 0 {
  508. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  509. } else {
  510. tt := time.NewTimer(timeout)
  511. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  512. }
  513. for {
  514. chosen, recv, recvOk := reflect.Select(cases)
  515. if chosen == 1 || !recvOk {
  516. break
  517. }
  518. rvcs = reflect.Append(rvcs, recv)
  519. }
  520. }
  521. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  522. }
  523. l = rv.Len()
  524. if ti.mbs {
  525. if l%2 == 1 {
  526. e.errorf("mapBySlice requires even slice length, but got %v", l)
  527. return
  528. }
  529. ee.WriteMapStart(l / 2)
  530. } else {
  531. ee.WriteArrayStart(l)
  532. }
  533. if l > 0 {
  534. var fn *codecFn
  535. for rtelem.Kind() == reflect.Ptr {
  536. rtelem = rtelem.Elem()
  537. }
  538. // if kind is reflect.Interface, do not pre-determine the
  539. // encoding type, because preEncodeValue may break it down to
  540. // a concrete type and kInterface will bomb.
  541. if rtelem.Kind() != reflect.Interface {
  542. fn = e.h.fn(rtelem, true, true)
  543. }
  544. for j := 0; j < l; j++ {
  545. if elemsep {
  546. if ti.mbs {
  547. if j%2 == 0 {
  548. ee.WriteMapElemKey()
  549. } else {
  550. ee.WriteMapElemValue()
  551. }
  552. } else {
  553. ee.WriteArrayElem()
  554. }
  555. }
  556. e.encodeValue(rv.Index(j), fn, true)
  557. }
  558. }
  559. if ti.mbs {
  560. ee.WriteMapEnd()
  561. } else {
  562. ee.WriteArrayEnd()
  563. }
  564. }
  565. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  566. fti := f.ti
  567. tisfi := fti.sfiSrc
  568. toMap := !(fti.toArray || e.h.StructToArray)
  569. if toMap {
  570. tisfi = fti.sfiSort
  571. }
  572. ee := e.e
  573. sfn := structFieldNode{v: rv, update: false}
  574. if toMap {
  575. ee.WriteMapStart(len(tisfi))
  576. if e.esep {
  577. for _, si := range tisfi {
  578. ee.WriteMapElemKey()
  579. e.kStructFieldKey(fti.keyType, si.encNameAsciiAlphaNum, si.encName)
  580. ee.WriteMapElemValue()
  581. e.encodeValue(sfn.field(si), nil, true)
  582. }
  583. } else {
  584. for _, si := range tisfi {
  585. e.kStructFieldKey(fti.keyType, si.encNameAsciiAlphaNum, si.encName)
  586. e.encodeValue(sfn.field(si), nil, true)
  587. }
  588. }
  589. ee.WriteMapEnd()
  590. } else {
  591. ee.WriteArrayStart(len(tisfi))
  592. if e.esep {
  593. for _, si := range tisfi {
  594. ee.WriteArrayElem()
  595. e.encodeValue(sfn.field(si), nil, true)
  596. }
  597. } else {
  598. for _, si := range tisfi {
  599. e.encodeValue(sfn.field(si), nil, true)
  600. }
  601. }
  602. ee.WriteArrayEnd()
  603. }
  604. }
  605. func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
  606. encStructFieldKey(encName, e.e, e.w, keyType, encNameAsciiAlphaNum, e.js)
  607. }
  608. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  609. fti := f.ti
  610. elemsep := e.esep
  611. tisfi := fti.sfiSrc
  612. var newlen int
  613. toMap := !(fti.toArray || e.h.StructToArray)
  614. var mf map[string]interface{}
  615. if f.ti.mf {
  616. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  617. toMap = true
  618. newlen += len(mf)
  619. } else if f.ti.mfp {
  620. if rv.CanAddr() {
  621. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  622. } else {
  623. // make a new addressable value of same one, and use it
  624. rv2 := reflect.New(rv.Type())
  625. rv2.Elem().Set(rv)
  626. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  627. }
  628. toMap = true
  629. newlen += len(mf)
  630. }
  631. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  632. if toMap {
  633. tisfi = fti.sfiSort
  634. }
  635. newlen += len(tisfi)
  636. ee := e.e
  637. // Use sync.Pool to reduce allocating slices unnecessarily.
  638. // The cost of sync.Pool is less than the cost of new allocation.
  639. //
  640. // Each element of the array pools one of encStructPool(8|16|32|64).
  641. // It allows the re-use of slices up to 64 in length.
  642. // A performance cost of encoding structs was collecting
  643. // which values were empty and should be omitted.
  644. // We needed slices of reflect.Value and string to collect them.
  645. // This shared pool reduces the amount of unnecessary creation we do.
  646. // The cost is that of locking sometimes, but sync.Pool is efficient
  647. // enough to reduce thread contention.
  648. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  649. var spool sfiRvPooler
  650. var fkvs = spool.get(newlen)
  651. var kv sfiRv
  652. recur := e.h.RecursiveEmptyCheck
  653. sfn := structFieldNode{v: rv, update: false}
  654. newlen = 0
  655. for _, si := range tisfi {
  656. // kv.r = si.field(rv, false)
  657. kv.r = sfn.field(si)
  658. if toMap {
  659. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  660. continue
  661. }
  662. kv.v = si // si.encName
  663. } else {
  664. // use the zero value.
  665. // if a reference or struct, set to nil (so you do not output too much)
  666. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  667. switch kv.r.Kind() {
  668. case reflect.Struct, reflect.Interface, reflect.Ptr,
  669. reflect.Array, reflect.Map, reflect.Slice:
  670. kv.r = reflect.Value{} //encode as nil
  671. }
  672. }
  673. }
  674. fkvs[newlen] = kv
  675. newlen++
  676. }
  677. fkvs = fkvs[:newlen]
  678. var mflen int
  679. for k, v := range mf {
  680. if k == "" {
  681. delete(mf, k)
  682. continue
  683. }
  684. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
  685. delete(mf, k)
  686. continue
  687. }
  688. mflen++
  689. }
  690. var j int
  691. if toMap {
  692. ee.WriteMapStart(newlen + mflen)
  693. if elemsep {
  694. for j = 0; j < len(fkvs); j++ {
  695. kv = fkvs[j]
  696. ee.WriteMapElemKey()
  697. e.kStructFieldKey(fti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  698. ee.WriteMapElemValue()
  699. e.encodeValue(kv.r, nil, true)
  700. }
  701. } else {
  702. for j = 0; j < len(fkvs); j++ {
  703. kv = fkvs[j]
  704. e.kStructFieldKey(fti.keyType, kv.v.encNameAsciiAlphaNum, kv.v.encName)
  705. e.encodeValue(kv.r, nil, true)
  706. }
  707. }
  708. // now, add the others
  709. for k, v := range mf {
  710. ee.WriteMapElemKey()
  711. e.kStructFieldKey(fti.keyType, false, k)
  712. ee.WriteMapElemValue()
  713. e.encode(v)
  714. }
  715. ee.WriteMapEnd()
  716. } else {
  717. ee.WriteArrayStart(newlen)
  718. if elemsep {
  719. for j = 0; j < len(fkvs); j++ {
  720. ee.WriteArrayElem()
  721. e.encodeValue(fkvs[j].r, nil, true)
  722. }
  723. } else {
  724. for j = 0; j < len(fkvs); j++ {
  725. e.encodeValue(fkvs[j].r, nil, true)
  726. }
  727. }
  728. ee.WriteArrayEnd()
  729. }
  730. // do not use defer. Instead, use explicit pool return at end of function.
  731. // defer has a cost we are trying to avoid.
  732. // If there is a panic and these slices are not returned, it is ok.
  733. spool.end()
  734. }
  735. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  736. ee := e.e
  737. if rv.IsNil() {
  738. ee.EncodeNil()
  739. return
  740. }
  741. l := rv.Len()
  742. ee.WriteMapStart(l)
  743. if l == 0 {
  744. ee.WriteMapEnd()
  745. return
  746. }
  747. // var asSymbols bool
  748. // determine the underlying key and val encFn's for the map.
  749. // This eliminates some work which is done for each loop iteration i.e.
  750. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  751. //
  752. // However, if kind is reflect.Interface, do not pre-determine the
  753. // encoding type, because preEncodeValue may break it down to
  754. // a concrete type and kInterface will bomb.
  755. var keyFn, valFn *codecFn
  756. ti := f.ti
  757. rtkey0 := ti.key
  758. rtkey := rtkey0
  759. rtval0 := ti.elem
  760. rtval := rtval0
  761. // rtkeyid := rt2id(rtkey0)
  762. for rtval.Kind() == reflect.Ptr {
  763. rtval = rtval.Elem()
  764. }
  765. if rtval.Kind() != reflect.Interface {
  766. valFn = e.h.fn(rtval, true, true)
  767. }
  768. mks := rv.MapKeys()
  769. if e.h.Canonical {
  770. e.kMapCanonical(rtkey, rv, mks, valFn)
  771. ee.WriteMapEnd()
  772. return
  773. }
  774. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  775. if !keyTypeIsString {
  776. for rtkey.Kind() == reflect.Ptr {
  777. rtkey = rtkey.Elem()
  778. }
  779. if rtkey.Kind() != reflect.Interface {
  780. // rtkeyid = rt2id(rtkey)
  781. keyFn = e.h.fn(rtkey, true, true)
  782. }
  783. }
  784. // for j, lmks := 0, len(mks); j < lmks; j++ {
  785. for j := range mks {
  786. if e.esep {
  787. ee.WriteMapElemKey()
  788. }
  789. if keyTypeIsString {
  790. if e.h.StringToRaw {
  791. ee.EncodeStringBytesRaw(bytesView(mks[j].String()))
  792. } else {
  793. ee.EncodeStringEnc(cUTF8, mks[j].String())
  794. }
  795. } else {
  796. e.encodeValue(mks[j], keyFn, true)
  797. }
  798. if e.esep {
  799. ee.WriteMapElemValue()
  800. }
  801. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  802. }
  803. ee.WriteMapEnd()
  804. }
  805. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  806. ee := e.e
  807. elemsep := e.esep
  808. // we previously did out-of-band if an extension was registered.
  809. // This is not necessary, as the natural kind is sufficient for ordering.
  810. switch rtkey.Kind() {
  811. case reflect.Bool:
  812. mksv := make([]boolRv, len(mks))
  813. for i, k := range mks {
  814. v := &mksv[i]
  815. v.r = k
  816. v.v = k.Bool()
  817. }
  818. sort.Sort(boolRvSlice(mksv))
  819. for i := range mksv {
  820. if elemsep {
  821. ee.WriteMapElemKey()
  822. }
  823. ee.EncodeBool(mksv[i].v)
  824. if elemsep {
  825. ee.WriteMapElemValue()
  826. }
  827. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  828. }
  829. case reflect.String:
  830. mksv := make([]stringRv, len(mks))
  831. for i, k := range mks {
  832. v := &mksv[i]
  833. v.r = k
  834. v.v = k.String()
  835. }
  836. sort.Sort(stringRvSlice(mksv))
  837. for i := range mksv {
  838. if elemsep {
  839. ee.WriteMapElemKey()
  840. }
  841. if e.h.StringToRaw {
  842. ee.EncodeStringBytesRaw(bytesView(mksv[i].v))
  843. } else {
  844. ee.EncodeStringEnc(cUTF8, mksv[i].v)
  845. }
  846. if elemsep {
  847. ee.WriteMapElemValue()
  848. }
  849. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  850. }
  851. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  852. mksv := make([]uintRv, len(mks))
  853. for i, k := range mks {
  854. v := &mksv[i]
  855. v.r = k
  856. v.v = k.Uint()
  857. }
  858. sort.Sort(uintRvSlice(mksv))
  859. for i := range mksv {
  860. if elemsep {
  861. ee.WriteMapElemKey()
  862. }
  863. ee.EncodeUint(mksv[i].v)
  864. if elemsep {
  865. ee.WriteMapElemValue()
  866. }
  867. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  868. }
  869. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  870. mksv := make([]intRv, len(mks))
  871. for i, k := range mks {
  872. v := &mksv[i]
  873. v.r = k
  874. v.v = k.Int()
  875. }
  876. sort.Sort(intRvSlice(mksv))
  877. for i := range mksv {
  878. if elemsep {
  879. ee.WriteMapElemKey()
  880. }
  881. ee.EncodeInt(mksv[i].v)
  882. if elemsep {
  883. ee.WriteMapElemValue()
  884. }
  885. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  886. }
  887. case reflect.Float32:
  888. mksv := make([]floatRv, len(mks))
  889. for i, k := range mks {
  890. v := &mksv[i]
  891. v.r = k
  892. v.v = k.Float()
  893. }
  894. sort.Sort(floatRvSlice(mksv))
  895. for i := range mksv {
  896. if elemsep {
  897. ee.WriteMapElemKey()
  898. }
  899. ee.EncodeFloat32(float32(mksv[i].v))
  900. if elemsep {
  901. ee.WriteMapElemValue()
  902. }
  903. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  904. }
  905. case reflect.Float64:
  906. mksv := make([]floatRv, len(mks))
  907. for i, k := range mks {
  908. v := &mksv[i]
  909. v.r = k
  910. v.v = k.Float()
  911. }
  912. sort.Sort(floatRvSlice(mksv))
  913. for i := range mksv {
  914. if elemsep {
  915. ee.WriteMapElemKey()
  916. }
  917. ee.EncodeFloat64(mksv[i].v)
  918. if elemsep {
  919. ee.WriteMapElemValue()
  920. }
  921. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  922. }
  923. case reflect.Struct:
  924. if rv.Type() == timeTyp {
  925. mksv := make([]timeRv, len(mks))
  926. for i, k := range mks {
  927. v := &mksv[i]
  928. v.r = k
  929. v.v = rv2i(k).(time.Time)
  930. }
  931. sort.Sort(timeRvSlice(mksv))
  932. for i := range mksv {
  933. if elemsep {
  934. ee.WriteMapElemKey()
  935. }
  936. ee.EncodeTime(mksv[i].v)
  937. if elemsep {
  938. ee.WriteMapElemValue()
  939. }
  940. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  941. }
  942. break
  943. }
  944. fallthrough
  945. default:
  946. // out-of-band
  947. // first encode each key to a []byte first, then sort them, then record
  948. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  949. e2 := NewEncoderBytes(&mksv, e.hh)
  950. mksbv := make([]bytesRv, len(mks))
  951. for i, k := range mks {
  952. v := &mksbv[i]
  953. l := len(mksv)
  954. e2.MustEncode(k)
  955. v.r = k
  956. v.v = mksv[l:]
  957. }
  958. sort.Sort(bytesRvSlice(mksbv))
  959. for j := range mksbv {
  960. if elemsep {
  961. ee.WriteMapElemKey()
  962. }
  963. e.asis(mksbv[j].v)
  964. if elemsep {
  965. ee.WriteMapElemValue()
  966. }
  967. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  968. }
  969. }
  970. }
  971. // // --------------------------------------------------
  972. type encWriterSwitch struct {
  973. // wi *ioEncWriter
  974. wb bytesEncAppender
  975. wf *bufioEncWriter
  976. // typ entryType
  977. bytes bool // encoding to []byte
  978. esep bool // whether it has elem separators
  979. isas bool // whether e.as != nil
  980. js bool // is json encoder?
  981. be bool // is binary encoder?
  982. _ [2]byte // padding
  983. // _ [2]uint64 // padding
  984. // _ uint64 // padding
  985. }
  986. func (z *encWriterSwitch) writeb(s []byte) {
  987. if z.bytes {
  988. z.wb.writeb(s)
  989. } else {
  990. z.wf.writeb(s)
  991. }
  992. }
  993. func (z *encWriterSwitch) writestr(s string) {
  994. if z.bytes {
  995. z.wb.writestr(s)
  996. } else {
  997. z.wf.writestr(s)
  998. }
  999. }
  1000. func (z *encWriterSwitch) writen1(b1 byte) {
  1001. if z.bytes {
  1002. z.wb.writen1(b1)
  1003. } else {
  1004. z.wf.writen1(b1)
  1005. }
  1006. }
  1007. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1008. if z.bytes {
  1009. z.wb.writen2(b1, b2)
  1010. } else {
  1011. z.wf.writen2(b1, b2)
  1012. }
  1013. }
  1014. func (z *encWriterSwitch) endErr() error {
  1015. if z.bytes {
  1016. return z.wb.endErr()
  1017. }
  1018. return z.wf.endErr()
  1019. }
  1020. func (z *encWriterSwitch) end() {
  1021. if err := z.endErr(); err != nil {
  1022. panic(err)
  1023. }
  1024. }
  1025. /*
  1026. // ------------------------------------------
  1027. func (z *encWriterSwitch) writeb(s []byte) {
  1028. switch z.typ {
  1029. case entryTypeBytes:
  1030. z.wb.writeb(s)
  1031. case entryTypeIo:
  1032. z.wi.writeb(s)
  1033. default:
  1034. z.wf.writeb(s)
  1035. }
  1036. }
  1037. func (z *encWriterSwitch) writestr(s string) {
  1038. switch z.typ {
  1039. case entryTypeBytes:
  1040. z.wb.writestr(s)
  1041. case entryTypeIo:
  1042. z.wi.writestr(s)
  1043. default:
  1044. z.wf.writestr(s)
  1045. }
  1046. }
  1047. func (z *encWriterSwitch) writen1(b1 byte) {
  1048. switch z.typ {
  1049. case entryTypeBytes:
  1050. z.wb.writen1(b1)
  1051. case entryTypeIo:
  1052. z.wi.writen1(b1)
  1053. default:
  1054. z.wf.writen1(b1)
  1055. }
  1056. }
  1057. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1058. switch z.typ {
  1059. case entryTypeBytes:
  1060. z.wb.writen2(b1, b2)
  1061. case entryTypeIo:
  1062. z.wi.writen2(b1, b2)
  1063. default:
  1064. z.wf.writen2(b1, b2)
  1065. }
  1066. }
  1067. func (z *encWriterSwitch) end() {
  1068. switch z.typ {
  1069. case entryTypeBytes:
  1070. z.wb.end()
  1071. case entryTypeIo:
  1072. z.wi.end()
  1073. default:
  1074. z.wf.end()
  1075. }
  1076. }
  1077. // ------------------------------------------
  1078. func (z *encWriterSwitch) writeb(s []byte) {
  1079. if z.bytes {
  1080. z.wb.writeb(s)
  1081. } else {
  1082. z.wi.writeb(s)
  1083. }
  1084. }
  1085. func (z *encWriterSwitch) writestr(s string) {
  1086. if z.bytes {
  1087. z.wb.writestr(s)
  1088. } else {
  1089. z.wi.writestr(s)
  1090. }
  1091. }
  1092. func (z *encWriterSwitch) writen1(b1 byte) {
  1093. if z.bytes {
  1094. z.wb.writen1(b1)
  1095. } else {
  1096. z.wi.writen1(b1)
  1097. }
  1098. }
  1099. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  1100. if z.bytes {
  1101. z.wb.writen2(b1, b2)
  1102. } else {
  1103. z.wi.writen2(b1, b2)
  1104. }
  1105. }
  1106. func (z *encWriterSwitch) end() {
  1107. if z.bytes {
  1108. z.wb.end()
  1109. } else {
  1110. z.wi.end()
  1111. }
  1112. }
  1113. */
  1114. // Encoder writes an object to an output stream in a supported format.
  1115. //
  1116. // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
  1117. // concurrently in multiple goroutines.
  1118. //
  1119. // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
  1120. // so its state can be reused to decode new input streams repeatedly.
  1121. // This is the idiomatic way to use.
  1122. type Encoder struct {
  1123. panicHdl
  1124. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  1125. e encDriver
  1126. // NOTE: Encoder shouldn't call it's write methods,
  1127. // as the handler MAY need to do some coordination.
  1128. w *encWriterSwitch
  1129. // bw *bufio.Writer
  1130. as encDriverAsis
  1131. err error
  1132. h *BasicHandle
  1133. hh Handle
  1134. // ---- cpu cache line boundary? + 3
  1135. encWriterSwitch
  1136. ci set
  1137. b [(5 * 8)]byte // for encoding chan or (non-addressable) [N]byte
  1138. // ---- writable fields during execution --- *try* to keep in sep cache line
  1139. // ---- cpu cache line boundary?
  1140. // b [scratchByteArrayLen]byte
  1141. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  1142. // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
  1143. }
  1144. // NewEncoder returns an Encoder for encoding into an io.Writer.
  1145. //
  1146. // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
  1147. // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
  1148. func NewEncoder(w io.Writer, h Handle) *Encoder {
  1149. e := newEncoder(h)
  1150. e.Reset(w)
  1151. return e
  1152. }
  1153. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  1154. // into a byte slice, using zero-copying to temporary slices.
  1155. //
  1156. // It will potentially replace the output byte slice pointed to.
  1157. // After encoding, the out parameter contains the encoded contents.
  1158. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  1159. e := newEncoder(h)
  1160. e.ResetBytes(out)
  1161. return e
  1162. }
  1163. func newEncoder(h Handle) *Encoder {
  1164. e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
  1165. e.bytes = true
  1166. if useFinalizers {
  1167. runtime.SetFinalizer(e, (*Encoder).finalize)
  1168. // xdebugf(">>>> new(Encoder) with finalizer")
  1169. }
  1170. e.w = &e.encWriterSwitch
  1171. e.hh = h
  1172. e.esep = h.hasElemSeparators()
  1173. return e
  1174. }
  1175. func (e *Encoder) resetCommon() {
  1176. // e.w = &e.encWriterSwitch
  1177. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  1178. e.e = e.hh.newEncDriver(e)
  1179. e.as, e.isas = e.e.(encDriverAsis)
  1180. // e.cr, _ = e.e.(containerStateRecv)
  1181. }
  1182. e.be = e.hh.isBinary()
  1183. _, e.js = e.hh.(*JsonHandle)
  1184. e.e.reset()
  1185. e.err = nil
  1186. }
  1187. // Reset resets the Encoder with a new output stream.
  1188. //
  1189. // This accommodates using the state of the Encoder,
  1190. // where it has "cached" information about sub-engines.
  1191. func (e *Encoder) Reset(w io.Writer) {
  1192. if w == nil {
  1193. return
  1194. }
  1195. // var ok bool
  1196. e.bytes = false
  1197. if e.wf == nil {
  1198. e.wf = new(bufioEncWriter)
  1199. }
  1200. // e.typ = entryTypeUnset
  1201. // if e.h.WriterBufferSize > 0 {
  1202. // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1203. // // e.wi.bw = bw
  1204. // // e.wi.sw = bw
  1205. // // e.wi.fw = bw
  1206. // // e.wi.ww = bw
  1207. // if e.wf == nil {
  1208. // e.wf = new(bufioEncWriter)
  1209. // }
  1210. // e.wf.reset(w, e.h.WriterBufferSize)
  1211. // e.typ = entryTypeBufio
  1212. // } else {
  1213. // if e.wi == nil {
  1214. // e.wi = new(ioEncWriter)
  1215. // }
  1216. // e.wi.reset(w)
  1217. // e.typ = entryTypeIo
  1218. // }
  1219. e.wf.reset(w, e.h.WriterBufferSize)
  1220. // e.typ = entryTypeBufio
  1221. // e.w = e.wi
  1222. e.resetCommon()
  1223. }
  1224. // ResetBytes resets the Encoder with a new destination output []byte.
  1225. func (e *Encoder) ResetBytes(out *[]byte) {
  1226. if out == nil {
  1227. return
  1228. }
  1229. var in []byte = *out
  1230. if in == nil {
  1231. in = make([]byte, defEncByteBufSize)
  1232. }
  1233. e.bytes = true
  1234. // e.typ = entryTypeBytes
  1235. e.wb.reset(in, out)
  1236. // e.w = &e.wb
  1237. e.resetCommon()
  1238. }
  1239. // Encode writes an object into a stream.
  1240. //
  1241. // Encoding can be configured via the struct tag for the fields.
  1242. // The key (in the struct tags) that we look at is configurable.
  1243. //
  1244. // By default, we look up the "codec" key in the struct field's tags,
  1245. // and fall bak to the "json" key if "codec" is absent.
  1246. // That key in struct field's tag value is the key name,
  1247. // followed by an optional comma and options.
  1248. //
  1249. // To set an option on all fields (e.g. omitempty on all fields), you
  1250. // can create a field called _struct, and set flags on it. The options
  1251. // which can be set on _struct are:
  1252. // - omitempty: so all fields are omitted if empty
  1253. // - toarray: so struct is encoded as an array
  1254. // - int: so struct key names are encoded as signed integers (instead of strings)
  1255. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1256. // - float: so struct key names are encoded as floats (instead of strings)
  1257. // More details on these below.
  1258. //
  1259. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1260. // - the field's tag is "-", OR
  1261. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1262. //
  1263. // When encoding as a map, the first string in the tag (before the comma)
  1264. // is the map key string to use when encoding.
  1265. // ...
  1266. // This key is typically encoded as a string.
  1267. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1268. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1269. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1270. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1271. // This is done with the int,uint or float option on the _struct field (see above).
  1272. //
  1273. // However, struct values may encode as arrays. This happens when:
  1274. // - StructToArray Encode option is set, OR
  1275. // - the tag on the _struct field sets the "toarray" option
  1276. // Note that omitempty is ignored when encoding struct values as arrays,
  1277. // as an entry must be encoded for each field, to maintain its position.
  1278. //
  1279. // Values with types that implement MapBySlice are encoded as stream maps.
  1280. //
  1281. // The empty values (for omitempty option) are false, 0, any nil pointer
  1282. // or interface value, and any array, slice, map, or string of length zero.
  1283. //
  1284. // Anonymous fields are encoded inline except:
  1285. // - the struct tag specifies a replacement name (first value)
  1286. // - the field is of an interface type
  1287. //
  1288. // Examples:
  1289. //
  1290. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1291. // type MyStruct struct {
  1292. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1293. // Field1 string `codec:"-"` //skip this field
  1294. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1295. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1296. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1297. // io.Reader //use key "Reader".
  1298. // MyStruct `codec:"my1" //use key "my1".
  1299. // MyStruct //inline it
  1300. // ...
  1301. // }
  1302. //
  1303. // type MyStruct struct {
  1304. // _struct bool `codec:",toarray"` //encode struct as an array
  1305. // }
  1306. //
  1307. // type MyStruct struct {
  1308. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1309. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1310. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1311. // }
  1312. //
  1313. // The mode of encoding is based on the type of the value. When a value is seen:
  1314. // - If a Selfer, call its CodecEncodeSelf method
  1315. // - If an extension is registered for it, call that extension function
  1316. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1317. // - Else encode it based on its reflect.Kind
  1318. //
  1319. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1320. // Some formats support symbols (e.g. binc) and will properly encode the string
  1321. // only once in the stream, and use a tag to refer to it thereafter.
  1322. func (e *Encoder) Encode(v interface{}) (err error) {
  1323. // tried to use closure, as runtime optimizes defer with no params.
  1324. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
  1325. // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
  1326. // defer func() { e.deferred(&err) }() }
  1327. // { x, y := e, &err; defer func() { x.deferred(y) }() }
  1328. if e.err != nil {
  1329. return e.err
  1330. }
  1331. if recoverPanicToErr {
  1332. defer func() {
  1333. // if error occurred during encoding, return that error;
  1334. // else if error occurred on end'ing (i.e. during flush), return that error.
  1335. err = e.w.endErr()
  1336. x := recover()
  1337. if x == nil {
  1338. e.err = err
  1339. } else {
  1340. panicValToErr(e, x, &e.err)
  1341. err = e.err
  1342. }
  1343. }()
  1344. }
  1345. // defer e.deferred(&err)
  1346. e.mustEncode(v)
  1347. return
  1348. }
  1349. // MustEncode is like Encode, but panics if unable to Encode.
  1350. // This provides insight to the code location that triggered the error.
  1351. func (e *Encoder) MustEncode(v interface{}) {
  1352. if e.err != nil {
  1353. panic(e.err)
  1354. }
  1355. e.mustEncode(v)
  1356. }
  1357. func (e *Encoder) mustEncode(v interface{}) {
  1358. if e.wf == nil {
  1359. e.encode(v)
  1360. e.e.atEndOfEncode()
  1361. e.w.end()
  1362. return
  1363. }
  1364. if e.wf.buf == nil {
  1365. e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
  1366. }
  1367. e.wf.calls++
  1368. e.encode(v)
  1369. e.e.atEndOfEncode()
  1370. e.w.end()
  1371. e.wf.calls--
  1372. if !e.h.ExplicitRelease && e.wf.calls == 0 {
  1373. e.wf.release()
  1374. }
  1375. }
  1376. // func (e *Encoder) deferred(err1 *error) {
  1377. // e.w.end()
  1378. // if recoverPanicToErr {
  1379. // if x := recover(); x != nil {
  1380. // panicValToErr(e, x, err1)
  1381. // panicValToErr(e, x, &e.err)
  1382. // }
  1383. // }
  1384. // }
  1385. //go:noinline -- as it is run by finalizer
  1386. func (e *Encoder) finalize() {
  1387. // xdebugf("finalizing Encoder")
  1388. e.Release()
  1389. }
  1390. // Release releases shared (pooled) resources.
  1391. //
  1392. // It is important to call Release() when done with an Encoder, so those resources
  1393. // are released instantly for use by subsequently created Encoders.
  1394. func (e *Encoder) Release() {
  1395. if e.wf != nil {
  1396. e.wf.release()
  1397. }
  1398. }
  1399. func (e *Encoder) encode(iv interface{}) {
  1400. // a switch with only concrete types can be optimized.
  1401. // consequently, we deal with nil and interfaces outside the switch.
  1402. if iv == nil || definitelyNil(iv) {
  1403. e.e.EncodeNil()
  1404. return
  1405. }
  1406. switch v := iv.(type) {
  1407. // case nil:
  1408. // case Selfer:
  1409. case Raw:
  1410. e.rawBytes(v)
  1411. case reflect.Value:
  1412. e.encodeValue(v, nil, true)
  1413. case string:
  1414. if e.h.StringToRaw {
  1415. e.e.EncodeStringBytesRaw(bytesView(v))
  1416. } else {
  1417. e.e.EncodeStringEnc(cUTF8, v)
  1418. }
  1419. case bool:
  1420. e.e.EncodeBool(v)
  1421. case int:
  1422. e.e.EncodeInt(int64(v))
  1423. case int8:
  1424. e.e.EncodeInt(int64(v))
  1425. case int16:
  1426. e.e.EncodeInt(int64(v))
  1427. case int32:
  1428. e.e.EncodeInt(int64(v))
  1429. case int64:
  1430. e.e.EncodeInt(v)
  1431. case uint:
  1432. e.e.EncodeUint(uint64(v))
  1433. case uint8:
  1434. e.e.EncodeUint(uint64(v))
  1435. case uint16:
  1436. e.e.EncodeUint(uint64(v))
  1437. case uint32:
  1438. e.e.EncodeUint(uint64(v))
  1439. case uint64:
  1440. e.e.EncodeUint(v)
  1441. case uintptr:
  1442. e.e.EncodeUint(uint64(v))
  1443. case float32:
  1444. e.e.EncodeFloat32(v)
  1445. case float64:
  1446. e.e.EncodeFloat64(v)
  1447. case time.Time:
  1448. e.e.EncodeTime(v)
  1449. case []uint8:
  1450. e.e.EncodeStringBytesRaw(v)
  1451. case *Raw:
  1452. e.rawBytes(*v)
  1453. case *string:
  1454. if e.h.StringToRaw {
  1455. e.e.EncodeStringBytesRaw(bytesView(*v))
  1456. } else {
  1457. e.e.EncodeStringEnc(cUTF8, *v)
  1458. }
  1459. case *bool:
  1460. e.e.EncodeBool(*v)
  1461. case *int:
  1462. e.e.EncodeInt(int64(*v))
  1463. case *int8:
  1464. e.e.EncodeInt(int64(*v))
  1465. case *int16:
  1466. e.e.EncodeInt(int64(*v))
  1467. case *int32:
  1468. e.e.EncodeInt(int64(*v))
  1469. case *int64:
  1470. e.e.EncodeInt(*v)
  1471. case *uint:
  1472. e.e.EncodeUint(uint64(*v))
  1473. case *uint8:
  1474. e.e.EncodeUint(uint64(*v))
  1475. case *uint16:
  1476. e.e.EncodeUint(uint64(*v))
  1477. case *uint32:
  1478. e.e.EncodeUint(uint64(*v))
  1479. case *uint64:
  1480. e.e.EncodeUint(*v)
  1481. case *uintptr:
  1482. e.e.EncodeUint(uint64(*v))
  1483. case *float32:
  1484. e.e.EncodeFloat32(*v)
  1485. case *float64:
  1486. e.e.EncodeFloat64(*v)
  1487. case *time.Time:
  1488. e.e.EncodeTime(*v)
  1489. case *[]uint8:
  1490. e.e.EncodeStringBytesRaw(*v)
  1491. default:
  1492. if v, ok := iv.(Selfer); ok {
  1493. v.CodecEncodeSelf(e)
  1494. } else if !fastpathEncodeTypeSwitch(iv, e) {
  1495. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1496. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1497. }
  1498. }
  1499. }
  1500. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1501. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1502. var sptr uintptr
  1503. var rvp reflect.Value
  1504. var rvpValid bool
  1505. TOP:
  1506. switch rv.Kind() {
  1507. case reflect.Ptr:
  1508. if rv.IsNil() {
  1509. e.e.EncodeNil()
  1510. return
  1511. }
  1512. rvpValid = true
  1513. rvp = rv
  1514. rv = rv.Elem()
  1515. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1516. // TODO: Movable pointers will be an issue here. Future problem.
  1517. sptr = rv.UnsafeAddr()
  1518. break TOP
  1519. }
  1520. goto TOP
  1521. case reflect.Interface:
  1522. if rv.IsNil() {
  1523. e.e.EncodeNil()
  1524. return
  1525. }
  1526. rv = rv.Elem()
  1527. goto TOP
  1528. case reflect.Slice, reflect.Map:
  1529. if rv.IsNil() {
  1530. e.e.EncodeNil()
  1531. return
  1532. }
  1533. case reflect.Invalid, reflect.Func:
  1534. e.e.EncodeNil()
  1535. return
  1536. }
  1537. if sptr != 0 && (&e.ci).add(sptr) {
  1538. e.errorf("circular reference found: # %d", sptr)
  1539. }
  1540. if fn == nil {
  1541. rt := rv.Type()
  1542. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1543. fn = e.h.fn(rt, checkFastpath, true)
  1544. }
  1545. if fn.i.addrE {
  1546. if rvpValid {
  1547. fn.fe(e, &fn.i, rvp)
  1548. } else if rv.CanAddr() {
  1549. fn.fe(e, &fn.i, rv.Addr())
  1550. } else {
  1551. rv2 := reflect.New(rv.Type())
  1552. rv2.Elem().Set(rv)
  1553. fn.fe(e, &fn.i, rv2)
  1554. }
  1555. } else {
  1556. fn.fe(e, &fn.i, rv)
  1557. }
  1558. if sptr != 0 {
  1559. (&e.ci).remove(sptr)
  1560. }
  1561. }
  1562. // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1563. // if fnerr != nil {
  1564. // panic(fnerr)
  1565. // }
  1566. // if bs == nil {
  1567. // e.e.EncodeNil()
  1568. // } else if asis {
  1569. // e.asis(bs)
  1570. // } else {
  1571. // e.e.EncodeStringBytesRaw(bs)
  1572. // }
  1573. // }
  1574. func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
  1575. if fnerr != nil {
  1576. panic(fnerr)
  1577. }
  1578. if bs == nil {
  1579. e.e.EncodeNil()
  1580. } else {
  1581. e.e.EncodeStringEnc(cUTF8, stringView(bs))
  1582. }
  1583. }
  1584. func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
  1585. if fnerr != nil {
  1586. panic(fnerr)
  1587. }
  1588. if bs == nil {
  1589. e.e.EncodeNil()
  1590. } else {
  1591. e.asis(bs)
  1592. }
  1593. }
  1594. func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
  1595. if fnerr != nil {
  1596. panic(fnerr)
  1597. }
  1598. if bs == nil {
  1599. e.e.EncodeNil()
  1600. } else {
  1601. e.e.EncodeStringBytesRaw(bs)
  1602. }
  1603. }
  1604. func (e *Encoder) asis(v []byte) {
  1605. if e.isas {
  1606. e.as.EncodeAsis(v)
  1607. } else {
  1608. e.w.writeb(v)
  1609. }
  1610. }
  1611. func (e *Encoder) rawBytes(vv Raw) {
  1612. v := []byte(vv)
  1613. if !e.h.Raw {
  1614. e.errorf("Raw values cannot be encoded: %v", v)
  1615. }
  1616. e.asis(v)
  1617. }
  1618. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1619. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1620. }
  1621. func encStructFieldKey(encName string, ee encDriver, w *encWriterSwitch,
  1622. keyType valueType, encNameAsciiAlphaNum bool, js bool) {
  1623. var m must
  1624. // use if-else-if, not switch (which compiles to binary-search)
  1625. // since keyType is typically valueTypeString, branch prediction is pretty good.
  1626. if keyType == valueTypeString {
  1627. if js && encNameAsciiAlphaNum { // keyType == valueTypeString
  1628. // w.writen1('"')
  1629. // w.writestr(encName)
  1630. // w.writen1('"')
  1631. // ----
  1632. // w.writestr(`"` + encName + `"`)
  1633. // ----
  1634. // do concat myself, so it is faster than the generic string concat
  1635. b := make([]byte, len(encName)+2)
  1636. copy(b[1:], encName)
  1637. b[0] = '"'
  1638. b[len(b)-1] = '"'
  1639. w.writeb(b)
  1640. } else { // keyType == valueTypeString
  1641. ee.EncodeStringEnc(cUTF8, encName)
  1642. }
  1643. } else if keyType == valueTypeInt {
  1644. ee.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  1645. } else if keyType == valueTypeUint {
  1646. ee.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  1647. } else if keyType == valueTypeFloat {
  1648. ee.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  1649. }
  1650. }
  1651. // func encStringAsRawBytesMaybe(ee encDriver, s string, stringToRaw bool) {
  1652. // if stringToRaw {
  1653. // ee.EncodeStringBytesRaw(bytesView(s))
  1654. // } else {
  1655. // ee.EncodeStringEnc(cUTF8, s)
  1656. // }
  1657. // }